ORIGINAL ARTICLE

Vitamin D Level and its Association with Mortality in Children Admitted in Pediatric ICU

RIZWANA QURESHI¹, BELA BASHIR², TUFAIL AHMED SOOMRO³, MUHAMMAD ZAKI⁴, MANSOOR AHMED BOUK⁵, GHULAM RASOOL BOUK⁶

^{1,2}Senior Registrar, ³Assistant Professor, ⁴Consultant, ⁶Professor, Department of Pediatrics, Ghulam Muhammad Mahar Medical College Sukkur ⁵House Physician, ⁶Schervier Rehabilitation and Nursing Home, Bronx, NY

Correspondence to: Rizwana Qureshi, Email: drrizwanaqureshi2017@gmail.com, Cell: 0332-3817108

ABSTRACT

Objective: To study the relationship between the levels of vitamin D of pediatric ICU patients in Pakistan and its effect on the rate of mortality among them which will pave ways to improve the clinical outcomes among Pediatric ICU patients of Pakistan. **Study Design:** Prospective observational study.

Place and Duration of Study: Pediatric Emergency Ward, Ghulam Muhammad Mahar Medical College, Sukkur Sindh Pakistan from 1st June 2018 to 31st December 2019.

Methodology: Seven hundred and eighty two children of both genders and aged range 1 to 15 years were enrolled. There Vitamin D levels were taken at the time of admission.

Results: The overall mortality rate was 13%. Mortality rate in sufficient group was ~9%. Mortality rate in insufficient group was up to 15% and in deficient group, it was 20.2%. The mortality rate was significantly higher in deficient and in insufficient group. **Conclusions**: Vitamin D levels are a significant predictor in the outcome of mortality in pediatric ICU. It is essential to monitor Vitamin D levels regularly, and efforts should be made to increase Vitamin D levels if they are deficient. **Keywords**: Vitamin D, Mortality, Pediatric ICU

INTRODUCTION

Vitamin D is a fat-soluble vitamin that plays a vital role in a balanced diet. Vitamin D is required for the mental and physical growth of children.¹ Vitamin D is crucial for calcium absorption from the intestine and kidneys. Moreover, it is essential to regulate the body's immune system as antigen-presenting cells (APCs), T and B cells, and macrophages all have vitamin D receptors.²

Vitamin-D deficiency is common in developing countries of South Asia, with 58.17% Pakistani population being Vitamin D deficient.³The prevalence rate is high in Karachi in children below five years of age up to 75%.¹ According to Bhatty et al⁴, serum Vitamin D levels (serum 25 OHD) of 20.1-20.9 ng/ml were defined as vitamin D insufficiency and serum Vitamin D levels (serum 25 OHD) of <20 ng/ml was considered as Vitamin D deficiency.

Serum Vitamin D levels can also be used to predict patient's health outcome.⁵ Various studies have shown that low levels of serum Vitamin D result in high mortality and worse prognosis in patients admitted in an intensive care unit (ICU).⁶ As Vitamin D plays a role in the absorption of calcium from kidneys and intestine, its deficiency can cause hypocalcemia, which also contributes to high mortality in critically ill children. Deficiency of vitamin D in the pediatric population is directly linked with longer hospital stay in pediatric ICU and more significant morbidity of disease in pediatric patients via Pediatric Risk of Mortality Score.⁷ Despite being highly prevalent in the pediatric to Vitamin D levels, and its associated complications and mortality risk especially in pediatric patients.

This purpose is to study the relationship between the levels of vitamin D of pediatric ICU patients in Pakistan and its effect on the rate of mortality among them, which will pave ways to improve the clinical outcomes among Pediatric ICU patients of Pakistan.

MATERIALS AND METHODS

This hospital based study was conducted in the Emergency Unit, Pediatric Ward in Pakistan from 1st-06-2018 to 31st-12-2019. A total of 782 children, both male and female of age group 1 to 15 were enrolled. Along with other relevant lab tests, Vitamin D levels were also done at the time of admission. Demographic information, lab values, and outcomes were noted in a self-structured questionnaire. Three groups were made according to serum vitamin D levels: sufficient group (serum vitamin D level \geq 30 ng/mL), in-sufficient group (serum vitamin D level \leq 30 ng/mL) and deficient group (serum vitamin D level < 20 ng/mL).⁸ Ethical approval was taken from institution review board and informed consent was taken from each participants.

Data were analyzed using SPSS-22. Chi-square was applied to compare the outcome in various groups. A p-value of less than 0.05 indicates that the difference in outcome between groups with normal vitamin D levels and hypovitaminosis D is significant enough to discard the null hypothesis.

RESULTS

There were 395 (50.5%) male children and 387 (49.5%) female children in our study. Overall, 403 (51.5%) children had sufficient vitamin D, 191 (24.4%) had insufficient, and 188 (24.0%) had deficient levels of Vitamin D. There was no gender difference in Vitamin D level (Table 1).

The overall mortality rate was 13%. The sufficient group mortality rate was 8.9%; in the insufficient group, it was 14.6%, and in the deficient group, it was 20.2%. The mortality rate was significantly higher in the deficient and insufficient group compared to sufficient group (Table 2)

Gender	Sufficient	Insufficient	Deficient	P values	
	(n=403)	(n=191)	(n=188)		
Male	212 (52.6%)	92 (48.1%)	91 (48.4%)	264	
Female	191 (47.4%)	99 (51.9%)	97 (51.6%)	.301	

Table 1: Comparison of genders according to groups (n=782)

Table 2: Frequency of mortality according to groups (n=782)

Table 2. Trequency of meriding decording to groupe (n=762)						
Mortality	Sufficient	Insufficient	Deficient	P values		
	(n=403)	(n=191)	(n=188)			
Discharg	367 (91.1%)	163 (85.4%)	150 (79.8%)			
е				.0005		
Death	36 (8.9%)	28 (14.6%)	38 (20.2%)			

DISCUSSION

In the present study, prevalence of vitamin D deficiency in pediatric intensive care unit was 24.0%. These results were comparable to a study conducted in India, which reports a 30.0% population with Vitamin D deficiency.⁹ Other studies¹⁰⁻¹² conducted in various other parts of the world show a range of Vitamin D deficiency prevalence from 40% to 95%.

This study showed that there was an increase in mortality as the Vitamin D levels decreased. In the sufficient group mortality rate was 8.9%, in the insufficient group it was 14.6%, and in the deficient group, it was 20.2%. This finding is comparable to the results of Kumar and colleagues.¹³ They reported a mortality rate of 13.1% insufficient group, 17.0% in insufficient group, and 21.6%

in the deficient group. A study conducted in the USA's adult intensive care unit also had a similar finding where mortality rate was observed to be higher in deficient group.⁹

Vitamin D levels are also related to the length of stay in the hospital. Shankar et al¹¹ reported that the duration of hospital stay was considerably longer in deficient group than those with normal vitamin D levels (7 vs 3 days).

The study's strength includes that patients were enrolled in a consecutive manner after informed consent, and hence patients belonging to every subspecialty participated in the study. Serum vitamin D levels were noted immediately after admission to minimize the influence of factors that may contribute to a decline in vitamin D levels following admissions. The study had its limitation as well. It was a single-center study. Sequential samples of Vitamin D levels were not collected instead vitamin D levels at the time of admissions were used, which may be influenced by preadmission factors. The deficiency of vitamin D lead to higher infections chances, longer hospital stays and increased mortality risks. Vitamin D levels should be regularly monitored, and supplements may be taken to bring levels to be normal.¹⁰⁻¹⁴

CONCLUSION

The mortality rate was significantly higher in vitamin D insufficient and vitamin D deficient group. Further large-scale multi-center studies are needed to study the association of Vitamin D levels and mortality in the pediatric population. Vitamin D's role in the immune system should be further explored to understand its association with severe illness.

REFERENCES

- Moorani KN, Mustufa MA, Hasan SF, Kubar N. Vitamin D status in under five children in diverse communities of Karachi. Pak J Med Sci Q 2019;35(2):414-9.
- Syed F, Latif MSZ, Ahmed I, Bibi S, Ullah S, Khalid N. Vitamin D deficiency in Pakistani population: critical overview from 2008 to 2018. NutrFood Sci2019; 50: 105-15.

- Akhtar S. Mini Review: Prevalence and correlates of vitamin D deficiency-perspectives from Pakistan. Pak J Pharm Sci 2016;29(4):1325-30.
- Bhatty SA, Shaikh NA, Irfan M, et al. Vitamin D deficiency in fibromyalgia. J Pak Med Assoc 2010;60(11):949-51.
- Lee P, Nair P, Eisman JA, Center JR. Vitamin D deficiency in the intensive care unit: an invisible accomplice to morbidity and mortality? Intensive Care Med 2009;35(12):2028-32.
- Cariolou M, Cupp MA, Evangelou E, Tzoulaki I, Berlanga-Taylor AJ. Importance of vitamin D in acute and critically ill children with subgroup analyses of sepsis and respiratory tract infections: a systematic review and meta-analysis. BMJ Open 2019;9(5):e027666.
- Áyulo M Jr, Katyal C, Agarwal Ć, Sweberg T, Rastogi D, Markowtiz M, et al. The prevalence of vitamin D deficiency and its relationship with disease severity in an urban pediatric critical care unit. Endocrine Regulations. 2014; 48(2): 69-76.
- Badawi NE, FadelAlgebaly HA, El Sayed R, Abu Zeid ES. Vitamin D deficiency in critically ill children. Kasr Al Ainy Med J 2017;23:6-11.
- Kumar KM, Das S, Biswal N, Parameswaran N, Nanda N. Vitamin D status at admission and its association with mortality in children admitted to the pediatric intensive care unit. Cureus 2020;12(6):e8413.
- Parlak M, Kalay S, Kalay Z, Kirecci A, Guney O, Koklu E. Severe vitamin D deficiency among pregnant women and their newborns in Turkey.J Matern Fetal Neonatal Med2015;28:5:548-51.
- Sankar J, Lotha W, Ismail J, Anubhuti C, Meena RS, Sankar MJ.Vitamin D deficiency and length of pediatric intensive care unit stay: a prospective observational study. Ann Intensive Care2016;6:3-8.
- Ebenezer K, Job V, Antonisamy B, Dawodu A, Manivachagan MN, Steinhoff. Serum vitamin D status and outcome among critically ill children admitted to the pediatric intensive care unit in South India. M.Indian J Pediatr2016;83:120-25.
- Venkatram S, Chilimuri S, Adrish M, Salako A, Patel M, Diaz-Fuentes G.Vitamin D deficiency is associated with mortality in the medical intensive care unit. Crit Care2011;15(6):R292.
- Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med 2012;40(1):63-72.